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This study explores the relationship between grid reliability and energy efficiency in 
China’s energy landscape. Findings highlight the influence of energy efficiency in the 
past while revealing random effects of smart grid penetration. Demand-side management 
and renewable energy integration significantly increase energy efficiency. Grid reliability 
and technology investment enhance efficiency, although consumption pattern changes 
show a limited impact. Implications for policy and energy strategies are discussed. 

I. Introduction   

Smart grid technologies revolutionize energy efficiency 
and sustainability. Demand-side management and renew-
able energy integration aim to enhance energy distribution, 
consumption, and reliability (Xie et al., 2023). Measure-
ments are crucial, as nations enhance their energy land-
scapes. This study examines China’s energy economy and 
the sensitive relationship between energy efficiency and 
smart grid installation. China’s energy reform and innova-
tion are global priorities. Advanced energy technology has 
developed due to carbon emission reduction, renewable en-
ergy integration, and reliable energy access. Energy trans-
formation demands smart grid integration (Fina & Mons-
berger, 2023). Smart grid technology has raised energy 
efficiency and environmental concerns. Prior research has 
discussed smart grid energy efficiency concerns. According 
to Kataray et al. (2023), smart grids with improved mon-
itoring, control, and communication might change energy 
systems; these measures can change energy use patterns, 
particularly during peak demand. Demand-side manage-
ment reduces grid pressure by increasing off-peak power 
consumption (Saleem et al., 2023). Smart grid development 
requires renewable energy integration. These sources pro-
mote energy efficiency and sustainability. Smart grid im-
plementation and renewable source integration may im-
prove energy efficiency and sustainability (Cicceri et al., 
2023). Thus, technology infrastructure investments (TII) 
are vital. Increased smart grid investments in sensors, com-
munication networks, and metering infrastructure improve 
grid stability and energy efficiency (Abdullah et al., 2023). 
This study investigated the complex connection between 

smart grid technology and energy efficiency, opening new 

research avenues. We present practical actions for policy-
makers and energy experts aimed at utilizing alternative 
energy sources. Quantifying energy efficiency correlations 
may enhance smart grid technology design and deploy-
ment. Smart grid sustainability is the subject of our in-
vestigation. Examining the environmental and economic 
consequences of technology will promote the use of sus-
tainable energy systems. Sustainable environmental and 
economic strategies must align with the long-term impli-
cations of smart grid installation. Finally, we explored how 
TII boosts energy efficiency. Our findings may assist deci-
sion-makers in allocating resources for energy efficiency. 
Our research helps firms make informed technology in-
vestments for long-term energy efficiency improvements. 
Understanding the study’s complex linkages will influence 
Chinese policy, energy planning, and sustainable develop-
ment. 
This paper begins with an outline of the inquiry. The 

second section details the study’s materials and methods. 
The third section discusses the research results. Final re-
search remarks are provided in the final section. 

II. Data and Methodology     

The data was procured from the World Bank (2022). The 
study’s variables were as follows: 

Dependent Variable   

A. Energy Efficiency (EE):    It assesses the productivity 
of the smart grid and energy management systems. An 
economy’s energy efficiency is measured by primary energy 
intensity (MJ/$2017 PPP GDP). Energy efficiency rises with 
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reduced energy intensity, because less energy produces the 
same economic output. 

Independent variables   

The Smart Grid Penetration Rate (SGPR):      It measures 
the incorporation of smart grid technologies into energy in-
frastructure—the percentage of the grid using smart grid 
solutions. SGPR is measured by renewable energy output 
(kWh), excluding hydropower. 

Demand-Side Management Implementation (DSMI):     
It assesses the success of demand-side management mea-
sures, such as time-of-use pricing, demand response pro-
grams, and load-shifting strategies. It is represented by the 
percentage of the population with electricity. 

Renewable Energy Integration (REI):    It assesses the 
influence of renewable energy sources on the energy mix 
in the grid. Renewable Energy Consumption illustrates how 
much a country or region relies on renewable energy as a 
proportion of Total Final Energy Consumption. 

Grid Reliability Metrics (GRM):    It evaluates power out-
age frequency, duration, voltage stability, and resilience. 
These measures show smart grid resilience. Transmission 
and distribution lose a percentage of electric power produc-
tion. Higher losses may reduce grid reliability. 

Technical Infrastructure Investment (TII):    It evalu-
ates smart grid projects. This variable measures a firm’s 
commitment to a high-technology energy management 
system. A greater research and development (R&D) expen-
diture percentage of GDP focuses on innovation and ad-
vanced technologies, including smart grid components. 

Energy Consumption Patterns (ECP):    It examines en-
ergy use patterns before and after smart grid deployment. 
This may impact peak demand, load distribution, and con-
sumption. The percentage of oil, gas, and coal electricity 
production measures energy demand. Smart grids and re-
newable energy may transform energy use. 
Energy efficiency increases with SGPR and innovation 

dissemination. Behavioral theories of energy consumption 
have introduced DSMI, which may boost energy efficiency. 
REI may improve EE by lowering dependence on non-re-
newable sources, linking it to sustainability ideas (Liu et al., 
2023). Grid dependability indicators boost EE by stabilizing 
energy systems and reducing energy losses. TII supports re-
source-based theories because higher investments improve 
energy efficiency. Socio-economic and environmental the-
ories affect energy use (Perez-Bezos et al., 2023). Under-
standing these tendencies may boost energy efficiency. 
The Generalized Method of Moments (GMM) is a widely 

used statistical technique in time series modeling that al-
lows researchers to estimate model parameters while ac-
counting for potential endogeneity and other sources of 
bias. Regarding EE modeling, with the provided variables, 
GMM can provide valuable insights into the relationships 
between the dependent variable, i.e., EE, and the indepen-
dent variables. The GMM identifies a time that captures the 
relationship between the variables and estimating the pa-
rameters that minimize the discrepancy between the sam-
ple and theoretical moments. Equation (1) shows the GMM 
specification for estimation, i.e., 

Where, 
EE shows Energy Efficiency 
SGPR shows Smart Grid Penetration Rate 
DSMI shows Demand-Side Management Implementa-

tion 
REI shows Renewable Energy Integration 
GRM shows Grid Reliability Metrics 
TII shows Technical Infrastructure Investment 
ECP shows Energy Consumption Patterns 

 shows constant, while  to  are the slope of the 
coefficients 
‘ln’ shows natural logarithm, ‘t’ shows time period, and 

 shows error term. 
The GMM estimate technique was employed in this 

study, because it addresses endogeneity and other statis-
tical biases in panel data analysis. Although instrumental 
variable (IV) methodologies and fixed effects models can 
be used, the GMM is often preferred because it tackles en-
dogeneity, especially where IV estimation instruments are 
scarce. 

III. Analysis and Discussion     

Table 1 shows the descriptive statistics of the variables. 
The average EE score was approximately 9.75, which indi-
cates the mean of EE levels in the dataset. The negative 
skewness of -1.14 suggests that the distribution of EEF 
scores is skewed to the left with potentially higher scores. 
The kurtosis value of 2.67 indicates that the distribution’s 
tails are heavier than those of a normal distribution, signi-
fying some peakedness. 
Smart grid technology adoption and integration aver-

aged 65,500,000,000. The positive skewness of 1.33 sug-
gests a right-skewed distribution with lower values. The 
average DSMIwas 97.85. A somewhat right-skewed distrib-
ution with a positive skewness of 0.69 suggests a concen-
tration of lower values. REI averaged 24.89, indicating the 
grid’s renewable energy sources. Average GRM was 6.78. 
The average TII was 1.13, indicating smart grid invest-
ments. Average ECP was 78.82; ECP compares energy usage 
before and after smart grid adoption. Left-skewed distribu-
tions with -0.75 skewness may concentrate greater values. 
Table 2 provides GMM estimations for reference. 
The Lagged EE coefficient was 0.768. This positive cor-

relation shows that previous EE levels significantly affect 
present EE. The SGPR coefficient was -3.69E-12, suggesting 
that SGPR decreases EE. This finding suggests that smart 
grid solutions may slowly improve EE (Waseem et al., 2023). 
The DSMI coefficient was -0.047. Thus, more demand-

side control reduces EEF. DSMI strategies may temporarily 
counterbalance their efficiency advantages due to initial 
expenses and modifications. The positive REI coefficient, 
0.044, suggests that the grid integration of renewable en-
ergy sources may improve EE. This supports the economic 
argument that renewable sources are more efficient and 
sustainable (Bai & Song, 2023). 

Efficiency Metrics: Assessing the Impacts of Grid Reliability on Energy Efficiency in Smart Systems

Energy RESEARCH LETTERS 2



Table 1. Descriptive Statistics   

Methods EEF SGPR DSMI REI GRM TII ECP 

Mean 9.75 6.55E+10 97.84 24.89 6.77 1.12 78.82 

Maximum 10.89 2.84E+11 100 33.91 8.24 2.40 82.84 

Minimum 6.31 68000000 96.74 11.34 5.47 0.56 72.96 

Std. Dev. 1.67 1.10E+11 1.41 9.27 0.90 0.67 3.23 

Skewness -1.13 1.33 0.68 -0.36 -0.09 0.68 -0.75 

Kurtosis 2.66 2.96 1.64 1.32 1.81 1.87 2.31 

Note: This table presents the descriptive statistics of the variables, including the maximum value, minimum value, and mean. It also displays the standard deviation, skewness, and 
kurtosis of the variables. 

Table 2. GMM Estimates   

Variables Coefficient Std. Error -Statistic Prob. 

EEF(-1) 0.76 0.13 5.54 0.00 

SGPR -3.69E-12 7.18E-13 -5.14 0.00 

DSMI -0.04 0.02 -2.06 0.04 

REI 0.04 0.02 1.91 0.06 

GRM 0.33 0.11 2.88 0.00 

TII -0.53 0.17 -3.01 0.00 

ECP 0.08 0.01 0.54 0.58 

Statistical Test 

R2 0.99 J-statistic 0.11 

Adjusted R2 0.99 Prob(J-statistic) 0.73 

Instrument rank 8 

Note: This table presents the GMM estimates of the variables, along with their coefficient values, standard errors, -statistics, and probability values. Note: Dependent variable: EE. 

The GRM coefficient was 0.335. A positive coefficient 
indicates that grid dependability improves EE. When the 
grid is dependable, interruptions and energy losses are re-
duced, improving EE. TII was -0.530; investment in smart 
grid technology decreases EE. Interestingly, the high initial 
expenses of technology adoption may take time to generate 
considerable efficiency advantages. The ECP coefficient was 
0.007, indicating that changes in ECP before and after smart 
grid adoption considerably affect EE (Ye et al., 2023). The 
robustness test for GMM estimations is displayed in Table 
3. 
This study suggests that several vital factors affect the 

Chinese economy’s EE. Smart grid adoption, DSMI, REI, and 
TII negatively correlate with EE. This indicates that more 
implementation and investment in these fields lower EE. 
Integration and investment in diverse technologies and in-
frastructures may provide inefficiencies, challenges, or con-
straints. However, the positive correlation between ECP and 
EE suggests that changing energy consumption behavior, 
perhaps towards more environmentally friendly and effi-
cient practices, improves China’s energy efficiency. 

IV. Conclusion   

This study reveals that prior EE is a predictor of current 
EE. The data shows an association between SGPR and EE, 
suggesting that a delay in efficiency increases due to smart 

grid implementation. DSMI is vital for EE, because it reveals 
its challenges and costs. As renewable energy sources pro-
vide efficiency benefits, their integration positively corre-
late with EE. GRM improve EE, emphasizing the need for 
reliable infrastructure. Investing in TII highlights the diffi-
culties of balancing upfront costs and future rewards. 
These findings affect China’s energy revolution policy-

makers and practitioners. These methods hinge on prior ef-
ficiency advancements to increase grid reliability and opti-
mize technological investments. This study contributes to 
scholarly discussions on sustainable energy transitions and 
sheds light on China’s initiatives regarding improving EE in 
smart systems. 
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Table 3. FMOLS Estimates   

Dependent Variable: ln(EEF) 

Variables Coefficient Std. Error t-Statistic Prob. 

ln(SGPR) -0.02 0.01 -2.71 0.00 

ln(DSMI) -19.55 2.93 -6.66 0.00 

ln(REI) -0.58 0.08 -6.89 0.00 

ln(GRM) 0.12 0.12 0.99 0.32 

ln(TII) -0.09 0.04 -1.95 0.05 

ln(ECP) 0.69 0.26 2.58 0.01 

C 90.85 14.70 6.17 0.00 

0.98 Mean dependent var 2.25 

Adjusted 0.97 S.D. dependent var 0.19 

Note: This table presents the FMOLS estimates of the variables, along with their coefficient values, standard errors, t-statistics, and probability values. 
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