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This study explores the time-frequency role of climate risk in the oil price dynamics 
using wavelet techniques. The findings show that oil prices are affected by climate risk, 
although some interdependent relationships are evident between the two variables in the 
long run. 

I. Introduction   

Evidence-based investment decisions are crucial, as 
studies reveal a contemporary time frequency link between 
climate risk and oil stock (Chien et al., 2021; Lorente et al., 
2023). In this study, we add to the body of empirical ev
idence regarding the time frequency relationship between 
climate risk and oil stock. 
Hypothetically, the stock channel relies on the portfolio 

diversification theory, which predicts an inverse linear re
lationship between climate risk and returns. Climate risk 
causes incremental demand for climate-related investment 
at the detriment of conventional stocks including oil stock 
(Salisu et al., 2023; Tumala et al., 2023). Thus, oil prices 
plummet due to stock market counter-shocks following 
net-zero transitions with attendant slow growth, macroeco
nomic volatility, and weakening external and fiscal posi
tions (Fofack, 2015). Meanwhile, the oil sector’s production 
process and market fundamentals, including crude oil sup
ply, demand, and prices, are particularly vulnerable to cli
mate risk (He & Zhang, 2022). 
This study considers sectoral stock returns, specifically 

oil-sector stock since investors are susceptible to varying 
sentiments that influence their demand for stocks. More
over, stock prices vary across different sectors (Zhou, 2018). 
Second, the study uses the climate policy uncertainty (CPU) 
index as a proxy for climate risk. The CPU index, created by 
Gavriilidis (2021), is a news-based indicator of climate un
certainty. 
This study’s crux is the application of the wavelet trans

formation to examine the association between oil price and 
climate risk. Wavelet methodology captures idiosyncrasies 

along time domain and different measuring scales (Haven 
et al., 2012). Studies have used time-domain methodology 
to analyse relationships in financial markets (Li et al., 2015; 
Sousa et al., 2014). These connections, however, may differ 
among frequencies and evolve with time. Our approach un
earths previously undiscovered economic time-frequency 
relationships. This maiden technique is employed to un
cover climate risk-oil stock attributes from 1987 to 2022. 
These periods accounted for the oil glut, financial crises, 
COVID-19, and other global downturns. This study pro
motes understanding the variable of interest, oil prices and 
climate risks, using refined methodology and providing a 
global context-specific time-frequency nexus. 
The remainder of this paper is structured as follows: Sec

tion II provides the data and methodology; Section III deals 
with empirical results; and the conclusion is detailed in 
Section IV. 

II. Data and Methodology     

The study employed monthly data from April 1987 to 
July 2022. Monthly data is relevant for investigating con
tagion effects, as shock transmission is swift and rapidly 
reverts to normalcy. We selected the price of West Texas 
Intermediate (WTI) crude as a benchmark for establishing 
the price of other light crudes globally because it is closely 
tied to other crude oil markets (Wu & Zhu, 2019). WTI 
prices were retrieved from the investing.com website 
(https://www.investing.com/), while the dataset for climate 
policy uncertainty was based on the index developed by 
Gavriilidis (2021).1 

Given its effectiveness in examining multi-resolution 
characteristics, the continuous wavelet transform was used 
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The methodology follows the work of Baker et al. (2016), searching eight leading US newspapers containing the terms {“uncertainty” or 
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islation” or “White House” or “Congress” or “EPA” or “law” or “policy”} (including variants such as “uncertainties,” “regulatory,” “poli
cies,” etc.). 
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for our analysis. The continuous wavelet transforms (CWT) 
 analyses a definite wavelet against the time se

quence , and is represented as follows: 

Where 

Meanwhile, the CWT has the time sequence power observed 
as: 

In tandem with the risk-return hypothesis, this study spec
ified the climate risk and oil-stock nexus as follows: 

Where * denotes the complex conjugate, t, which means the 
point in a time series with restricted observations where 
wavelet is applied; σ is the scaling or dilation factor; and 
τ is the location parameter. CPU is the climate policy un
certainty proxy of climate risks, and WTI measures the oil 
stock price. 

III. Empirical Analyses    
A. Wavelet Decomposition    

There are many periods in the datasets, and the short- 
and long-run periods alone do not represent the appropri
ate time scales in the detailed analysis (Raza et al., 2017). 
The continuous wavelet power spectrum shows the move
ment of the series – WTI and CPU – in a three-dimensional 
contour plot: time, frequency, and color code. The time dis
played on the horizontal axis is divided into five: 0 - 100, 
101 - 200, 201 - 300, 301 - 400 and 401 - 423 for 1987M04 
- 1995M08, 1995M09 - 2004M01, 2004M02 - 2012M06, 
2012M07 - 2020M11, 2020M12 -2022M07, respectively. 
Meanwhile, the vertical axis represents the period such 
that (0-8), (8-32), (32-64), and (64-128) indicate short-run, 
medium-run, long-run and very long-run periods, respec
tively. In Figures 1 and 2, items inside the U area, hereafter 
cone of influence (COI), are interpreted as the region show
ing the statistical significance of the series variability. Fur
thermore, the red regions signal high variability, while the 
blue depicts area(s) with low variability in the series. The 
black line represents the 5% significance level; thus, the ar
eas inside the cone contain dynamic patterns which are sta
tistically significant at 95%. All the areas outside the cone 
are out of consideration, as yellow explains the lower ver
sion of red. 
In Figures 1 and 2, at the beginning of the short-run 

frequency for WTI and CPU, there were deep red areas in 
1987, indicating extremely high variability, which was sus
tained till the early medium-run period. Meanwhile, black 
shows the series is significant at 5%. The series witnessed 
a slight appearance of yellow at the beginning of this pe
riod, which paved the way for its variance; before long run, 
volatility was witnessed in August 1995, though mixed with 

Figure 1. The Continuous Wavelet Spectrum of the       
WTI Return Series    
Figure 1 represent the continuous wavelet spectrum of the return series of CPUs from 
May 1987 to July 2022. The thick black contour represents the significance level at 5% 
for the region in the cone of influence (COI) against the red noise. The code of the 
colour for power ranges from blue (low power) to red (high power). 

Figure 2. The Continuous Wavelet Spectrum of CPU       
Return Series   
Notes: Figure 2. represent the continuous wavelet spectrum of return series of CPU from 
May 1987 to July 2022. The thick black contour represents the significance level at 5% 
for the region in cone of influence (COI) against the red noise. The code of the colour for 
power ranges from blue (low power) to red (high power). 

a few blue traces. In Figure 1, from September 1995 to Jan
uary 2004, the series experienced high variability amidst 
drifts and spikes in the early short run during the earlier 
months until later in the medium run. This is contrary to 
happenings in the CPU series. During the aforementioned 
months, the CPU series witnessed high variability early in 
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the medium-run frequency and started reversing to the 
short-run frequency in June 1999, and subsequently wit
nessed medium-run frequencies in 2002 before the appear
ance of blue and yellow, signaling low and lower variability 
respectively, till the end of the time phase. 
Further examination revealed the disappearance of the 

red color at higher frequencies in both figures. However, red 
(low variability) is more pronounced in Figure 2, with traces 
of blue signaling shifts into a low variability region. Only 
the WTI showed high variability in the medium-run fre
quency during the 201–300 time phase, and it was signifi
cant at the 5% level. In contrast, the short-run period was 
dampened with the yellow color, suggesting that the WTI 
initially had low variability during the short run but got 
stronger in the medium run. Only blue areas were identified 
later in the medium-, long- and very long-run frequencies 
in Figure 1, implying the absence of co-movements across 
time scales for the whole sample period. In Figure 2, strong 
red laden with the black contour represents a significantly 
high variability of WTI in the short and medium runs. 

B. Wavelet Transform Coherence     

The wavelet coherence was used to establish the lead-lag 
effect of two variables. It explicitly displayed how variables 
cross and cause others in frequency bands and intervals, 
strengthening and revealing the causality between WTI and 
CPU. 
The COI specifies the region with edge effects and is dis

played outside the black line. The color code for coherence 
ranges from blue (low) to red (high). The arrows indicate 
the phase difference between the two series. Arrows point
ing to the right mean that the variable is in phase. Arrows 
pointing to the left suggest that the variables are out of 
phase. In-phase indicates that the variables have cyclical 
effects, and out-of-phase or anti-phase connotes anti-cycli
cal effects on each other. 
Figure 3 exposed that in the short-run period between a 

0-100 months cycle, i.e., from 1987M04-1995M08, the ar
rows were right up, indicating that the variables were ex
hibiting in-phase effects with WTI leading and CPU lag
ging, implying that in the short-run period of 
1987M04-1995M08, there is a cyclical effect of WTI on CPU. 
During the period 1995M07–1996M11 (101–200), the ar
rows pointed left and left down, meaning the variables were 
out-phase, with CPU lagging and WTI leading in an anti-
cyclical effect. Meanwhile, in the 201-300 months cycles 
short-run period, the arrows pointed left up, indicating out-
phase nexus, with CPU leading and WTI lagging, indicating 
CPU had an anti-cyclical effect on WTI. However, in the 
early times of 301-400, the arrows turned right down, re
flecting in-phase, with CPU leading and WTI lagging and 
establishing that CPU causes WTI cyclically. Whereas, from 
401-423, there is no evidence of short-term causality be
tween the variables. 
According to Figure 3, in the medium run (8-32) period, 

for 0–100-month cycles, the latter time – towards the end 
of 1993 – witnessed left down arrows indicating out-phase 
association, with WTI leading and CPU lagging. This means 
that WTI has a cyclical impact on the CPU during these 

Figure 3. Wavelet Transform Coherence of WTI and       
CPU  
Notes: The thick black contour represents the significance level at 5% against the red 
noise. The cone of influence specifies the region affected by edge effects and is displayed 
outside of the black line. The colour code for coherence ranges from blue (low) to red 
(high). The phase difference between the two series is indicated by arrows. Arrows 
pointing to the right mean that the variable are in phase. Arrows pointing to the left 
mean that the variables are out of phase. In phase indicates the variables are having 
cyclic effects and out of phase or anti-phase connotes anti-cyclical effect on each other. 

months. In the subsequent month cycles – 101-200 – we 
have both left down and right down arrows reflecting out- 
and in-phase, respectively, with CPU leading and lagging 
simultaneously in the medium-run period. This attests to 
the imbalances in CPU globally, which might impact oil 
stock in some parts of the world and vice versa. There is an 
overlap from one month cycles to another between 201-300 
and 301-400, as the black contour with arrows pointing left 
down overlaps with the two sets of monthly cycles (see Fig
ure 3). Eventually, the anti-cyclical impact of WTI on CPU 
occurred towards the end of June 2012 till July 2012. Mean
while, there are no medium-run effects between WTI and 
CPU, as there was no evidence of causality between the 
variables. 
The long-run period (32-64) for 0-100 has arrows point

ing both left towards the tail end of 1995M08. This indi
cates an out-phase scenario, meaning WTI leads, creating 
an anti-cyclical causality on the CPU. The anti-phase effect 
of the WTI on the CPU was maintained in the succeeding 
month cycles (101-200), as WTI maintained its out-phase 
impact on the CPU, which was sustained till early 2012. 
Finally, the long-run (64-128) period occurred only in 
101-200 and 201-300 months, which was abrupt. The long-
run impacts favor WTI in an out-phase manner in the two 
different month cycles. WTI was leading while CPU was lag
ging, depicting that in some months in 1995M04-2004M01 
and 2004M02-2012M06, WTI had a very long-run causal ef
fect on CPU, ceteris paribus. 

Role of Climate Risk in the Oil Price Dynamics

Energy RESEARCH LETTERS 3

https://erl.scholasticahq.com/article/90893-role-of-climate-risk-in-the-oil-price-dynamics/attachment/188924.jpeg


IV. Conclusion   

While most empirical work has investigated climate pol
icy uncertainty and oil-stock nexus over a single time scale, 
we employed wavelets to analyze this dependence over 
multiple periods. This methodological framework is capa
ble of detecting variations in climate risk-oil stock rela
tionships during diverse time frames. The results of con
tinuous wavelet power spectra identified the patterns of 
strong variance in many small, medium, and long periods 
for oil stock price, while high variance is visible on small 
and medium scales but is absent during long periods for 

the CPU. The study established evidence of common vari
ation through the wavelet coherence from 2002 to 2012, 
wherein long-scale evidence of strong coherence exists be
tween the series in the long-run periods. The results also 
support the existence of bidirectional causality in the long-
run timescale. The study can help investors and policymak
ers to track the co-movement of climate risk and oil stock. 
This research can also be used to examine oil-stock fluctua
tions induced by climate risk and develop strategies for sta
bilizing the market. 
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