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In this short note, we investigate persistence in two climate risk measures – climate 
policy uncertainty index (cpu_index) and the Global Land and Ocean Temperature 
Anomalies (GLOT). Using the fractional integration method, we find that cpu_index and 
GLOT exhibit high, but mean reverting persistence, both in full and sub-samples. 

I. Introduction   

One of the biggest threats to human existence is in the 
risk inherent in changing climatic conditions.1 Climate 
change has been estimated to have various effects on dif-
ferent aspects of human existence: from the effects it has 
on air quality (Jacob & Winner, 2009), to the effects it has 
on the economy (Tol, 2009), its effects on water resources 
(Barnett et al., 2004), and various aspects of human health 
(Haines & Patz, 2004). 

Efforts to mitigate the adverse effects of climate change 
have given rise to commitments like the Kyoto Protocol of 
1997 and the Paris Agreement of 2015.2 Despite these cli-
mate agreements, policies around mitigating the negative 
effects of climate change have not been consistent (for ex-
ample, the back-and-forth of the United States on the Paris 
Agreement between Presidents Trump and Biden); mean-
while, global mean temperature has been steadily rising, 
with the top seven warmest years occurring starting 2015.3 

This rising temperature and uncertainty in climate policy 
may be indicative of continued inconsistencies in climate 
policy, and persistence in global warming measures. 

Therefore, it is important to test the time series prop-
erties of both climate policy and global warming measures, 
especially concerning their persistence or otherwise. We 
test persistence in climate policy uncertainty index (cpu_in-
dex)4 developed by Gavriilidis (2021), which accounts for at-
titudes towards climate policy, and persistence in Global 
Land and Ocean Temperature Anomalies (GLOT)5, which 

measures actual climate change – the departure of global 
temperature from a long-term average and constructed 
from land and sea surface temperatures. The GLOT is in-
cluded in this study given that temperature is likely the 
most important climatic variable (Strangeways, 2010).6 Per-
sistence in cpu_index means climate policy remains uncer-
tain (such as the back-and-forth of the US to stay or leave 
the Paris Climate Agreement). Persistence in GLOT means 
temperature anomalies continue to rise above a desired 
long-term average. What persistence in both measures en-
tails is that attitudes or policies towards reducing global 
warming may be inconsistent, which may account for in-
creased risk from the adverse effects of global warming. 

There are various attempts in literature to test persis-
tence in climate-related issues. For example, the effect of 
COVID-19 on the transitory nature of CO2 emissions in 
the world’s largest emitters shows low level of persistence 
in CO2 emissions (Claudio-quiroga & Gil-Alaña, 2022). In 
Bermejo et al. (2021), atmospheric pollution (suspended 
particles (PM2.5) and Ozone (O3)) in ten US cities are found 
to be transitory (low persistence), the same result is ob-
tained for four mega-cities in China (Chen et al., 2016). 
Meanwhile, temperature has long memory and may lead 
to future climate warming in Sub-Sahara Africa (Gil-Alaña 
et al., 2019). Additionally, heterogeneous degrees of per-
sistence in temperature and precipitation exist in US cities 
(Gil-Alaña et al., 2022). Finally, evidence shows that fine 
particulate matter (PM2.5) possesses low persistence imply-
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See https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health#:~:text=Climate change affects the so-
cial,malaria%2C diarrhoea and heat stress. 

https://www.cfr.org/backgrounder/paris-global-climate-change-agreements 

https://news.un.org/en/story/2022/01/1110022 

Data can be retrieved from https://www.policyuncertainty.com/climate_uncertainty.html 

Data can be retrieved from https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/ 

For a review of other climate change measures, see Salisu & Oloko (2023). 
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ing mean reversion and transitory effect of shocks in 20 
megacities across the world (Bermejo et al., 2022). 

In this paper, we test for persistence in both cpu_index 
and GLOT, which represent attitudes towards climate policy 
and actual change in global climate temperature, respec-
tively. Previous studies are either specific to specific loca-
tions or analyze specific climatic indicators. Understand-
ing persistence in these climate change measures will help 
guide the direction of policies related to climate risk. 

We report that the measures have high persistence but 
are mean reverting. Thus, we establish that actions that are 
lax on climate change policy, including climate tempera-
ture change may last into the future. 

II. Methodology   

After a shock, if a series tends to slowly return to its 
equilibrium level, we say that the series has persistence. 
Since the standard framework7 only allows integer degrees 
of differentiation, our modeling strategy relies on the con-
cept of fractional integration to characterize persistence. 
For this reason, fractionally integrated methods have 
gained traction, with an array of empirical applications 
(Baillie & Bollerslev, 1994; Caporale et al., 2018; Gil-Alaña 
et al., 2019; Gil-Alaña & Monge, 2020; Gil-Alaña & Robin-
son, 1997). A more recent theoretical rationale, in terms 
of shock length (using an error-duration model), has been 
established, building on the work of Granger and Joyeux 
(1980). 

Granger and Joyeux (1980) introduced the autoregressive 
fractionally integrated moving average model, which allows 
for the modeling of persistence or long memory d, where 
d is a differencing or memory parameter. Therefore, a time 
series  follows a fractional process if: 

where,  and  are the autoregressive and moving 
average polynomials, respectively;  is the backward-shift 
operator and . The fractional differencing lag 
parameter  is expressed by the polynomial expan-
sion: 

The gamma function is represented by . A fractional 
process is said to be stationary and invertible when the 
persistence parameter , . Hence, the au-
tocorrelation function for a zero-integrated process for a 
such process decays geometrically, while the autocorrela-
tion function for a long-memory process decays hyperbol-
ically, and the autocorrelation coefficients are of the same 
sign as . To be more specific, when , since 
the autocorrelations are negative, we refer to this phenom-
enon as anti-persistent memory. Secondly, for 
the process is stationary but has a long memory, and shocks 
decay hyperbolically rather than geometrically. In addition, 

when  the relevant series in question is non-
stationary, with mean reverting tendencies and an uncon-
ditional variance growing more slowly than when the per-
sistence parameter . Finally, when  the 
procedure is characterized as explosive non-mean reverting 
and non-stationary. 

We utilize the maximum likelihood estimator, a para-
metric method pioneered by Sowell (1992), to estimate the 
long-memory (fractional integration) parameter, , of a 
time series. The precision of the parameter estimations 
generated from the data is a benefit of Sowell (1992). 

III. Results   

We examine the Gavriilidis (2021) climate policy uncer-
tainty index (cpu_index) and the Global Land and Ocean 
Temperature Anomalies (GLOT) from the United States Na-
tional Oceanic and Atmospheric Administration to gauge 
the persistence in climate risk measures, using available 
monthly series from April 1987 to August 2022. Our sample 
period choice stems from the available dataset of the cli-
mate policy uncertainty index. The climate uncertainty in-
dex is composed of standardized textual data relating to cli-
mate risk, greenhouse gas emissions, global warming, and 
climate change, among others, from eight leading US news-
papers. Meanwhile, the GLOT averages both land and ocean 
temperatures across the globe. Figure 1 below plots the re-
spective series that are used in the analyses. The graph de-
picts the peaking trend in climate uncertainty, as well as 
rising global land and ocean temperatures. 

The estimates of the integration order  in Eq. (1) for the 
two series in question are shown in Table 1. We show the 
results under two basic assumptions in the unit root liter-
ature: (i) only an intercept or a constant, i.e., with 
a priori; and (ii) both an intercept and a (linear) temporal 
trend, i.e., with both parameters and calculated from the 
data. 

We find that the two series (in Table 1) reflecting climate 
risk measures have long memory, regardless of whether the 
model with constant only or the model with constant and 
trend is used. Specifically, we find significant evidence of 
persistence in both series, as our persistence parameter, 
lies between  and . The Wald test statistic is applied to 
each statistically significant fractional integration parame-
ter to determine the level of long memory inherent in the 
related series. The Wald test, however, consistently rejects 
the null hypothesis that the fractional integration parame-
ter is not statistically different from unity. Implicitly, re-
gardless of the sample period or model structure used, all 
of the series are determined to have long memory and to be 
mean reverting. As a result, we can conclude that, despite 
their high persistence, the climate risk indicators are mean 
reverting. This suggests that the impact of any policy shock 
will take a long time to dissipate. 

See Dickey & Fuller (1979) and Phillips & Perron (1988) 7 
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Figure 1. Trends in   cpu_index  and  GLOT  
Notes: This plot displays the movement in climate policy uncertainty index (cpu_index) 
and the Global Land and Ocean Temperature Anomalies (GLOT) from April 1987 to Au-
gust 2022 

Table 1. Full estimation   

Fractional Integration Estimation 

Constant 
only 

Constant & 
Trend 

cpu_index 

0.4543*** 
[0.0264] 

0.4017*** 
[0.0303] 

-20.6630*** -19.6910*** 

GLOT 

0.4962*** 

[0.0165] 
0.49079*** 

[0.0158] 

-30.44976*** -32.0423*** 

Notes: The values in the square bracket, [ ], are standard errors. “*”, “**”, and “***” de-
note significance at the 10%, 5%, and 1% levels, respectively. 

We performed a structural break test on the data to en-
sure its reliability. The Bai and Perron (2003) test, which 
permits up to five structural breaks in the time series, fur-
ther supports the necessity of sub-sampling the entire 
dataset. The break date derived by the Bai-Perron test is 
October 2016. In light of Table 2 (sub-samples), we inves-
tigate the persistence of climate risk indicators. The results 
presented in Table 2, are not different from those high-
lighted for the full sample in Table 1. In other words, the 
climate risk indicators are fractionally integrated, whether 
the structural break is considered. The persistence found in 
cpu_index and GLOT is in line with that of Gil-Alana et al. 
(2019), whereby temperature in Sub-Sahara Africa has long 
memory, thus leading to future climate warming. The im-
plication of this is that in terms of persistence, the global 
measure of climate change and climate policy yields results 

similar to some of the least developed parts of the world, 
even if persistence is low in more advanced countries (see 
Bermejo et al., 2021). 

IV. Conclusion   

In this study, we use the fractional integration method to 
explore the time series features of climate risk indicators. 
In addition to characteristics like long-range dependence 
and persistence, this technique may capture time trend 
components. Climate change-related risks have far-reach-
ing consequences, and thus have sparked growing concerns 
and a desire to learn more about them. The widespread ef-
fects of climate risks and the growing importance of climate 
change-related issues inspired our research. We show that 
the presence of long memory and persistence (even though 
mean reverting) in cpu_index suggest that policy inactions 
or uncertainties like the US shifting position on the Paris 
Agreement may be long-lasting. In addition, persistence in 
GLOT (which eventually reverts to its mean) suggests that 
global temperature will continue to rise unless there are 
policies to mitigate its effects and reduce its risk. Therefore, 
policymakers, especially from the large emitting countries 
must reduce climate policy uncertainties, so that the effect 
of global warming can be mitigated. 
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Table 2. Pre and post-structural Break     

Pre-Break Post-Break 

Constant only Constant & Trend Constant only Constant & Trend 

CPU Index 0.2902*** 
[0.0401] 

0.2662*** 
[0.04353] 

0.3325*** 
[0.1119] 

0.2782** 
[0.1119] 

-17.6683*** -16.8356*** -5.9597*** -6.2040*** 

GLOT 0.4951*** 
[0.0188] 

0.4895*** 
[0.0179] 

0.4420*** 
[0.0749] 

0.4420*** 
[0.0750] 

-26.7584*** -28.4628*** -7.4432*** -7.4365*** 

Notes: The values in the square bracket, [ ], are standard errors. “*”, “**”, and “***” denote significance at the 10%, 5%, and 1% levels, respectively. 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License 

(CCBY-SA-4.0). View this license’s legal deed at https://creativecommons.org/licenses/by-sa/4.0 and legal code at https://cre-
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